BBA 67346

INFLUENCE OF Mg²⁺, ITP⁴⁻ AND ATP⁴⁻ ON HUMAN PLATELET PHOS-PHOFRUCTOKINASE

JAN WILLEM N. AKKERMAN*, GERTIE GORTER*, JAN J. SIXMA* and GERARD E. J. STAAL*

^aDivision of Haemostasis and Thrombosis and ^bDivision of Haematology, State University Hospital, Utrecht (The Netherlands)

(Received May 21st, 1974)

SUMMARY

In the reaction catalyzed by human platelet phosphofructokinase, Mg^{2+} is required for optimal activity. Maximal Mg^{2+} activation was obtained at $[Mg^{2+}] = [MgITP^{2-}]$ or higher. At high $MgATP^{2-}$ concentrations there is an increase in the allosteric inhibition by ATP^{4-} .

INTRODUCTION

6-Phosphofructokinase (EC 2.7.1.11) catalyzes the conversion of Fru-6-P to Fru-1,6- P_2 , coupled with the dephosphorylation of ATP to ADP. This catalysis depends on Mg^{2+} . It is generally accepted that Mg^{2+} is important as a constituent of the $MgATP^{2-}$ complex and that $MgATP^{2-}$ is the substrate for the enzyme [1, 2]. Since in a solution the $MgATP^{2-}$ complex is in equilibrium with the free ions, interference of Mg^{2+}_{free} and ATP^{4-}_{free} in kinetic studies might be present.

Such interference has indeed been observed. Lardy and Parks [19] found inhibition by free ATP in several enzymes for which MgATP is the substrate. Paetkau and Lardy [15] showed that free ATP⁴⁻ acted as a powerful inhibitor and that Mg²⁺ was required for the reaction of rabbit muscle phosphofructokinase.

In view of the important function of phosphofructokinase in regulating human platelet glycolysis, we characterized the partially purified enzyme [3–5]. Phosphofructokinase exhibits normal Michaelis-Menten kinetics towards MgATP²⁻. At increased MgATP²⁻ the enzyme activity is suppressed. This allosteric inhibition is absent when MgITP²⁻ is involved in the reaction.

The present paper describes the kinetics of purified platelet phosphofructo-kinase towards MgATP²⁻ and MgITP²⁻ with special attention to the role of the free ions. It will be shown that the enzyme kinetics towards both phosphate donors are highly dependent on the levels of Mg²⁺ and ATP⁴⁻ in the assay medium.

MATERIALS AND METHODS

The nucleotide phosphates, added as sodium salts, glycolytic intermediates,

cofactors and enzymes used for measurement of the phosphofructokinase activity were purchased from Boehringer Mannheim. MgCl₂ was prepared from 99.998% MgO (Koch-Light Laboratories, Colnbrook, England) and constant boiling HCl and its concentration was determined by complexometric titration. All other chemicals used were of analytical grade.

Human platelet phosphofructokinase was partially purified as described previously [4]. The enzyme activity was measured by coupling the formation of Fru-1,6-P₂ to the a-glycerophosphate dehydrogenase reaction and following the oxidation of NADH at 340 nm in a Perkin-Elmer-124 spectrophotometer at 30 °C. The assay medium contained in a final volume of 3 ml: 50 mM Tris-HCl (pH 8.0), 6 mM KCl, 0.05 ml dialyzed auxiliary enzymes (fructose diphosphate aldolase, 10 mg/ml; triosephosphate isomerase, 2 mg/ml; glycerophosphate dehydrogenase, 2 mg/ml), 0.2 mM disodium NADH, 1.0 mM Fru-6-P and MgCl₂ and Na₂ATP or Na₃ITP at the various concentrations required for the levels of free and complexed ions indicated in Results. These levels were calculated with the aid of a stability constant for MgATP²⁻ of 20 000 M⁻¹, which has been determined for a medium that was closely similar to the one used by us [6, 7]. The MgITP²⁻ complex was assumed to have an identical stability constant [1, 8]. Complex formation between Mg2+ and Fru-6-P and between K⁺ and ATP⁴⁻ was considered negligible because of the low stability constants of these complexes [1, 7, 9]. The formation of HATP³⁻ and MgHATP⁻ was neglected since these complexes represent less than 1% of the total nucleotide content at pH 8.0 [10]. A unit of enzyme activity is defined as the amount of enzyme activity catalyzing the formation of 1 μ mole of Fru-1,6- P_2 per min at $30~^{\circ}$ C. The various purified phosphofructokinase preparations (n=12) had a specific activity of about 7 units/mg protein, as tested in the assay medium described above at 4 mM Fru-6-P, 0.4 mM ATP_{total}, 5 mM MgSO₄ and an additional 5 mM disodium EDTA. The protein content was based on a protein determination according to Lowry et al. [11], using crystalline bovine serum albumin (Sigma, St. Louis, U.S.A.) as a standard. The influences of ATP⁴⁻, ITP⁴⁻ and Mg²⁺ reported here, were not contaminated by effects of ionic strength or Na⁺ concentrations and corrections were unnecessary.

RESULTS

Human platelet phosphofructokinase shows normal Michaelis-Menten kinetics with respect to substrate MgITP²⁻. The enzyme activity at various MgITP²⁻ concentrations is illustrated in Fig. 1. It is shown that different activities were measured when the Mg²⁺ concentration was fixed, and therefore the concentration of ITP⁴⁻ varied, and when the concentration of ITP⁴⁻ was kept constant thus changing the Mg²⁺ concentrations. At 0.2 mM MgITP²⁻ the enzyme activity increased about 75 % when the Mg²⁺ concentration was raised from 20 μ M to 0.5 mM and the concentration of ITP⁴⁻ was decreased from 0.5 mM to 20 μ M. Similar results were obtained at other MgITP²⁻ levels.

The data indicate that Mg^{2+} may activate or ITP^{4-} may inhibit the phospho-fructokinase activity. Further information about these effects was obtained by studying the possible activation by Mg^{2+} and possible inhibition by ITP^{4-} separately. Constant $MgITP^{2-}$ complex concentrations were used to eliminate any

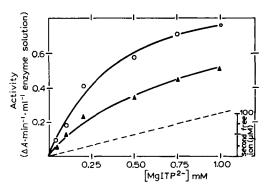


Fig. 1. Phosphofructokinase activity, expressed as $\Delta A \cdot \min^{-1} \cdot \min^{-1}$ enzyme solution at various MgITP²⁻ concentrations, both at a fixed ITP⁴⁻ of 0.5 mM ($\triangle - \triangle$) and at a fixed Mg²⁺ concentration of 0.5 mM ($\bigcirc - \bigcirc$). The corresponding concentrations of Mg²⁺ and ITP⁴⁻, respectively, are indicated by the dotted line.

influence of the substrate level on the enzyme activity. Such measurements are difficult, since at a fixed MgITP²⁻ concentration any change in the Mg²⁺ concentration is accompanied with an opposite alteration of the ITP⁴⁻ concentration.

The influence of ITP⁴⁻ is shown in Fig. 2, which demonstrates that a slight increase of the ITP⁴⁻ concentration resulted in a pronounced inhibition both at saturating and non-saturating MgITP²⁻ levels. The inhibition was maximal at 4-5 mM ITP⁴⁻, independent of the MgITP²⁻ concentration.

The influence of Mg²⁺ is shown in Fig. 3. The Mg²⁺ concentration which caused maximal stimulation was equal to the concentration of the substrate MgITP²⁻ used. This relation was consistent from levels as low as 0.05 mM MgITP²⁻ up to concentrations of 0.6 mM, indicating a dependence of Mg²⁺ stimulation from the

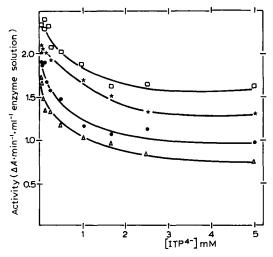


Fig. 2. Phosphofructokinase activity, expressed as $\triangle A \cdot \min^{-1} \cdot \min^{-1}$ enzyme solution at various ITP⁴⁻ and different fixed MgITP²⁻ concentrations of 2.0 mM (\bigcirc — \bigcirc), 0.6 mM (\bigstar — \bigstar), 0.3 mM (\bullet — \bullet) and 0.15 mM (\triangle — \triangle).

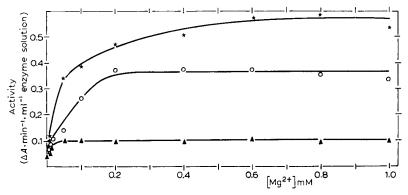


Fig. 3. Phosphofructokinase activity, expressed as $\Delta A \cdot \min^{-1} \cdot \min^{-1}$ enzyme solution at various Mg^{2+} concentration and different fixed $MgITP^{2-}$ concentration of 0.6 mM (*—*), 0.2 mM (\bigcirc — \bigcirc) and 0.05 mM (\blacktriangle — \blacktriangle).

concentration of the MgITP²⁻ complex. This point was further clarified by relating the phosphofructokinase activity to the [Mg²⁺]/[MgITP²⁻] ratio. The MgITP²⁻ concentration was kept fixed to exclude any direct influence of the substrate. Fig. 4 shows that this method of recording the results illustrates a pronounced inhibition at [Mg²⁺]/[MgITP²⁻] ratios less than 1.0. No effect was obtained at ratios of 1.0 or above.

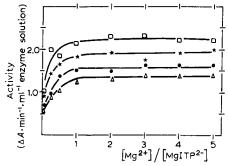


Fig. 4. Phosphofructokinase activity, expressed as $\triangle A \cdot \min^{-1} \cdot \min^{-1}$ enzyme solution at various $[Mg^{2+}]/[MgITP^{2-}]$ ratios and different fixed $MgITP^{2-}$ concentration of 2.0 mM (\square — \square), 0.6 mM (*—**), 0.3 mM (\square — \square) and 0.15 mM (\triangle — \triangle).

These data might be thought to indicate that free Mg²⁺ is required in concentrations equal to or higher than the substrate MgITP²⁻ concentrations to give optimal phosphofructokinase activity. We may however not yet exclude the possibility that these effects are produced by inhibition by ITP⁴⁻. We therefore tried to relate the enzyme activity at a fixed MgITP²⁻ concentration to the [ITP⁴⁻]/[MgITP²⁻] ratio. No clear relation between changes in enzyme activity and this ratio could be demonstrated (Fig. 5). At a fixed [ITP⁴⁻]/[MgITP²⁻] ratio an increase of the MgITP²⁻ concentration is not clearly reflected by an increasing enzyme activity. Especially at a [ITP⁴⁻]/[MgITP²⁻] ratio of 1.0 the activity is independent of the substrate concen-

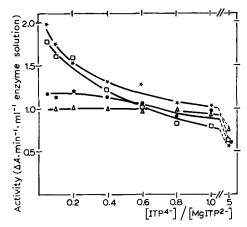


Fig. 5. Phosphofructokinase activity, expressed as $\Delta A \cdot \min^{-1} \cdot \min^{-1}$ enzyme solution at various (ITP⁴⁻]/[MgITP²⁻] ratios and different fixed MgITP²⁻ concentration of 2.0 mM (\square — \square), 0.6 mM (*—**), 0.3 mM (\square — \square) and 0.15 mM (\square — \square).

tration, which is in sharp contrast with Fig. 4. No absolute conclusion about the involvement of ITP⁴⁻ may be drawn from these data, but they are highly suggestive for a crucial role of free Mg²⁺ in phosphofructokinase activity.

The role of free Mg^{2+} is demonstrated in more detail in Fig. 6, illustrating the strong inhibition especially at low $[Mg^{2+}]/[MgITP^{2-}]$ ratios. Replotting these activity data in a reciprocal plot demonstrates that there still remains a "basic" phosphofructokinase activity at very low $[Mg^{2+}]/[MgITP^{2-}]$ ratios, indicating the absence of an absolute requirement for free Mg^{2+} .

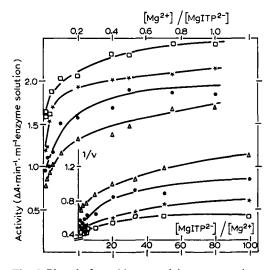


Fig. 6. Phosphofructokinase activity, expressed as $\Delta A \cdot \min^{-1} \cdot \min^{-1}$ enzyme solution at various $[Mg^{2+}]/[MgITP^{2-}]$ ratios less than 1. and different fixed $MgITP^{2-}$. Symbols as in Fig. 4. The insert shows the Lineweaver-Burk plot of the same data.

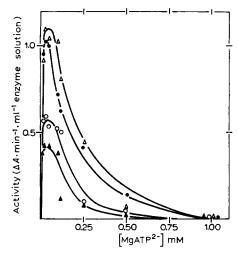


Fig. 7. Phosphofructokinase activity, expressed as $\Delta A \cdot \text{min}^{-1} \cdot \text{ml}^{-1}$ enzyme solution at various MgATP²⁻ concentration and different fixed ATP⁴⁻ concentration of 50 μ M ($\Delta - \Delta$), 25 μ M ($\bigcirc - \bigcirc$), 12,5 μ M ($\bullet - \bullet$) and 10 μ M ($\Delta - \Delta$). The ratio [Mg²⁺]/[MgATP²⁻] was \geq 1.0.

The results obtained with MgITP may probably be extrapolated to MgATP. The influence of free Mg²⁺ would thus be negligible at [Mg²⁺]/[MgATP²⁻] ratios higher than 1.0. Such a situation is depicted in Fig. 7 which shows the well known allosteric inhibition at high substrate concentrations, but also points out how strongly this inhibition was increased by slight raises of the ATP⁴⁻ concentrations.

DISCUSSION

The study of metal-adenine nucleotide complexes as parts of enzyme-catalyzed reactions is hampered by the fact that only one of the three constituents, the two free ions and the complex itself, can be fixed, whereas the changes in concentrations of the second component automatically varies the third. The variation of the levels of free ions at fixed complex concentrations and the use of MgITP, which shows no allosteric inhibition, in stead of MgATP alleviates studies of these interactions. The use of high levels of one of the free ions and therefore very low concentrations of the other has been applied to eliminate one of the two variables [12]. In our experiments significant influences of very low Mg²⁺ concentrations could be detected (Fig. 6), thus making this approach useless. The use of other buffer systems in which higher stability constants have been determined, showed no real improvements.

The influence of free ions appeared indeed to be of substantial importance for phosphofructokinase activity. Mg^{2+} activated or ITP^{4-} inhibited. The Mg^{2+} effect was directly related to the substrate concentration, whereas the influence of ITP^{4-} was not dependent on the substrate level. The activation by Mg^{2+} was only present at $[Mg^{2+}]/[MgITP^{2-}]$ ratios lower than 1.0. Double reciprocal plots of velocity vs $[Mg^{2+}]/[MgITP^{2-}]$ ratio suggested that still a basic phosphofructokinase activity was present at very low $[Mg^{2+}]/[MgITP^{2-}]$ ratios.

Assuming a similar dependence on the Mg²⁺ concentration when MgATP²⁻

is involved in the phosphofructokinase activity, a lack of free Mg²⁺ could be excluded by keeping the Mg²⁺ concentrations equal or above the MgATP²⁻ concentrations. Under these conditions ATP⁴⁻ increased the allosteric inhibition by MgATP²⁻. The requirement for free Mg²⁺ in amounts equal to the substrate MgITP²⁻ concentration suggests that Mg²⁺ has at least two roles in the reaction mechanism: (a) it forms a complex with ITP⁴⁻ to form MgITP²⁻ which is the substrate for the enzyme, and (b) it forms a complex with the enzyme to activate the enzymic reaction [12–16].

In contrast to the enzyme from yeast [1], platelet phosphofructokinase is inhibited by free ATP⁴⁻, since these ions increase the allosteric inhibition by the MgATP²⁻ complex.

Platelets contain about 2 μ moles/ATP/10¹¹ cells, which is involved in metabolic processes [17]. The Mg²⁺ content of the platelet has not yet been determined precisely, but probably varies between 2 and 3 μ moles/10¹¹ cells (Holmsen, H., personal communication). Since magnesium is bound to various other components of the cell, it seems feasible to assume that the Mg²⁺ concentration is inadequate for binding all the metabolic ATP, thus leaving free ATP⁴⁻ in the cytoplasma. The level of free Mg²⁺ will then be very low. In rat tissue only 10% of the total Mg²⁺ content is present as free ions [18]. If this holds true also for the human platelet, the requirement for free Mg²⁺ and the inhibitory action of free ATP⁴⁻ may provide important mechanisms for the regulation of phosphofructokinase activity in the circulating platelet.

REFERENCES

- 1 Mavis, R. D. and Stelwagen, E. (1970) J. Biol. Chem. 245, 674-680
- 2 Blangy, D., Buc, H. and Monod. J. (1968) J. Mol. Biol. 31, 13-35
- 3 Akkerman, J. W. N., Gorter, G., Corbey, H. M. A., Staal, G. E. J. and Sixma, J. J. (1973) in Erythrocytes, Thrombocytes and Leukocytes (Gerlach, E., Moser, K., Deutsch, E. and Wilmanns, W., eds), pp. 135-138, Georg Thieme Publishers, Stuttgart
- 4 Akkerman, J. W. N., Gorter, G. Sixma, J. J. and Staal, G. E. J. (1974) Biochim. Biophys. Acta 370, 120-129
- 5 Akkerman, J. W. N., Gorter, G., Staal, G. E. J. and Sixma, J. J. (1974) Eur. J. Clin. Invest., in the press
- 6 TaquiKhan, M. M. and Martell, A. E. (1962) J. Phys. Chem. 66, 10-15
- 7 O'Sullivan, W. J. and Perrin, D. D. (1964) Biochemistry 3, 18-26
- 8 Purich, D. L. and Fromm, H. J. (1972) Biochem. J. 130, 63-69
- 9 McGilvery, R. W. (1965) Biochemistry 4, 1924-1930
- 10 Morrison, J. F. and Heyde, E. (1972) Annu. Rev. Biochem. 41, 29-54
- 11 Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) J. Biol. Chem. 193, 265-275
- 12 Keech, B. and Barrit, G. J. (1967) J. Biol. Chem. 242, 1983-1987
- 13 Bais, R. and Keech, B. (1972) J. Biol. Chem. 247, 3255-3261
- 14 Dugal, B. S. (1973) Biochem. Biophys. Res. Commun. 54, 1603-1610
- 15 Paetkau, V. and Lardy, H. A. (1967) J. Biol. Chem. 242, 2035-2042
- 16 Wimhurst, J. M. and Manchester, K. L. (1972) FEBS Lett. 27, 321-326
- 17 Kotelba-Witkowska, B., Holmsen, H. and Mürer, E. M. (1972) Br. J. Haematol. 22, 429-435
- 18 Veloso, D., Guynn, R. W., Oskarsson, M. and Veech, R. L. (1973) J. Biol. Chem. 248, 4811-4819
- 19 Lardy, H. A. and Parks, Jr, R. E. (1956) in Enzymes: Units of Biological Structure and Function, p. 584, Academic Press, New York